Counting Ordinary Lines in Complex Space

Charles Wolf ${ }^{1}$ (with Abdul Basit, ${ }^{1}$ Zeev Dvir ${ }^{2}$ and Shubhangi Saraf ${ }^{1}$)

Background

Sylvester-Gallai Theorem: Given a finite set of points in \mathbb{R}^{2}, either (1) all the points are collinear; or
(2) there is a line passing through exactly 2 points, called an ordinary line

Figure 1: Kelly's [4] picture proof of the Sylvester-Galllai Theorem.
Question: How many ordinary lines do n non-collinear points determine? $t_{r}:=\#$ of lines through exactly r points. (So $t_{2}=\#$ of ordinary lines.)

Answer (Green-Tao)[2]: n non-collinear points in \mathbb{R}^{2} have $t_{2} \geq \frac{1}{2} n$. This is tight due to the following construction by Böröczky:

Figure 2: $\frac{n}{2}$ points on a circle and $\frac{n}{2}$ points on a line determining $\frac{n}{2}$ ordinary lines
The Sylvester-Gallai Theorem is not true over \mathbb{C}^{2}. Here is a counterexample:

Figure 3: Hesse configuration[1]: 9 inflection points of $X^{3}+Y^{3}+Z^{3}=0$.
We do have an analogue of the Sylvester-Gallai Theorem in \mathbb{C}^{3} :
Theorem (Kelly, [3]) Given a finite set of points in \mathbb{C}^{3}, either:
(1) all the points are coplanar; or
(2) there exists an ordinary line.

Main Question

Given n points in \mathbb{C}^{3}, not all coplanar, how many ordinary lines do they determine?

Results

Theorem 1: Given a set of n points in \mathbb{C}^{3}, at most $n-2$ points in any plane,

$$
t_{2} \geq \frac{3}{2} n
$$

Figure 4: Exceptional Case: $n-1$ coplanar points have as few as $n-1$ ordinary lines.
Theorem 2: Given a set of n points in \mathbb{C}^{3}, at most $\frac{2}{3} n$ points in any plane

$$
t_{2} \geq \frac{3}{2} n+c \sum_{r \geq 4} r^{2} t_{r} .
$$

Theorem 3: Given a set of n points in \mathbb{C}^{4}, at most $\frac{2}{3} n$ in any three-dimensional affine subspace,

$$
t_{2} \geq \frac{1}{12} n^{2} .
$$

Proof Sketch

- Given $\left\{v_{1}, \ldots, v_{n}\right\} \in \mathbb{C}^{d}$, let V be the $n \times d$ matrix with $i^{\text {th }}$ row v_{i}.
- Construct a matrix A, where each row of A corresponds to coefficients of a collinear triple v_{i}, v_{j}, v_{k}.
$\left[\begin{array}{cccccccc}* & * & * & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & * & * & 0 & * & \cdots & 0 \\ & & & \vdots & & & & \\ 0 & * & 0 & 0 & * & 0 & \cdots & *\end{array}\right] \quad\left[\begin{array}{ccc}\square & v_{1} & - \\ - & v_{2} & - \\ \vdots & \\ & v_{n} & -\end{array}\right]$

Proof Sketch Continued

If A has no large zero submatrix

- If t_{2} is small enough, we can show A has high rank

This forces V to have small rank, small enough to make the points span only 2 dimensions. Contradiction!
If A has a large zero submatrix:

Figure 6: The large zero submatrix has support on rows of U and columns of W.
We get a lemma that one of the the following 2 cases holds:
(When $|W|$ is large:) $t_{2} \geq \frac{|W|}{2} n$, or
(2) When $|W|$ is small:)There is point with least $\frac{2}{3} n-|W|$ ordinary lines. Iterate this lemma by pruning points with many ordinary lines. Done!
Open Questions

Is the bound on Theorem 1 tight?

- Can we get a quadratic bound with at most $\frac{2}{3} n$ points in a plane?

References

1] D. Eppstein.
ttps://upload.wikimedia.org/wikipedia/commons
thumb/e/eb/Hesse configuration sug/360pr-Hesse configuration_svg.png.
2] B. Green and T. Tao
On sets defining few ordinary lines
L. Kelly

A resolution of the Sylvester-Gallai problem of J.-P. Serre.
4) L. Kelly and W. Moser.

On the number of ordinary lines determined by n points.
Canadian Journal of Mathematics, 10:210-219. 1958.

Contact Information:

Email:ciw13@math.rutgers.edu
$=0$ Website: math.rutgers.edu/~ciw13

Figure 5: * indicates a nonzero coefficient of a collinear triple.

